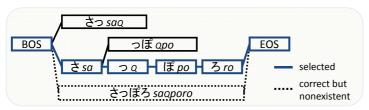
Semantic Classification of Automatically Acquired Japanese Nouns using Lexico-Syntactic Clues

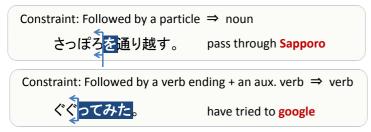
Yugo Murawaki


Sadao Kurohashi

(Kyoto University, Japan)

1. Lexicon Acquisition from Text

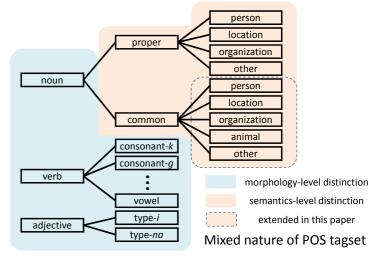
Japanese morphological analysis


- Segmentation + POS tagging
 - · Much more ambiguous than POS tagging
- Every morpheme needs to be in the dictionary in order to be selected as the output
- Unknown morpheme problem: Long tail of infrequently used morphemes cannot be maintained manually
- Solution: Automatically find unknown morphemes in raw text and add them to the dictionary

Morpheme Lattice: Morpheme "saqporo" need to be added to the dictionary

3. Solution: Two-stage Approach First Stage: Boundary Identification + Morphological Classification

Use morphological constraints on what can and cannot follow a morpheme


- Little information about semantic-level distinction
- Hard to use syntactic clues directly because even segmentation is unclear

Second Stage: Semantic Classification of Acquired Nouns

- With acquired nouns, apply morphological analysis + dependency parsing to text
- Use lexical preferences in syntactic relations
 - Reflects semantic-level distinction

2. Challenge in POS Classification

- When originally designed, POS tags were expected to be assigned manually
- · Mixed nature obstructs automation
- Partial POS classification as a compromise [Murawaki+ 2008]
- Demand for full POS classification in applications of morphological analysis
 - e.g. Named Entity Recognition requires semantic information of morphemes

4. Experiments and Discussion

- Multi-class linear classifier
 - Input: Lexico-syntactic clues extracted from multiple occurrences of a noun
 - · Output: One of semantic classes
- Manually registered nouns for training
- · Classify automatically acquired nouns

Confusion matrix of classification

Actual											
			Proper nouns				Common nouns				
			PSN	LOC	ORG	OTH	PSN	LOC	ORG	ANI	ОТН
Predicted	Proper	person	<u>16</u>		1		4				1
		location									1
		organization			<u>4</u>						
		other									
	Common	person	16				<u>39</u>			1	2
		location	2	2	1			10			4
		organization									2
		animal								<u>28</u>	
		other	3	1	1		1	13		9	<u>338</u>

- Overall accuracy was 87.0% (435 / 500)
- Proper nouns often misidentified as common nouns
- Asymmetry between proper and common nouns
 - Common nouns have distinctive usages
 "φ increase in number", "X become φ"
 "many/much φ", and "which φ?"
 - · Few distinctive usages for proper nouns