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Importance of a Dictionary In
Japanese Word Segmentation

 No space between words

 Words In the Input are assumed to be covered
by a pre-defined dictionary
— To tell real words from non-words

’%‘i:z (presentation)

—

Input: FEZ*x LBE 'é_] (1 will make a presentation)
L | (do) =» segmenter [
ffé_ (polite)

.

dictionary



Unknown Word Problem

e Cannot register all words by hand



Unknown Word Problem

e Cannot register all words by hand

e Solution: run a separate lexical
acquisition process to find unknown
words in text
— Use broader context for disambiguation

— Exploit rich morphology of Japanese (vurawaki-,
2008)



Morphology does not help
segment a noun phrase
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Fermi energy
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(a place)
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Morphology does not help
segment a noun phrase

Every position within a noun phrase Is
potentially a boundary

w0 m () % ¢ WLy
Tsuneyama castle always  Yamashiro
(a place) (a place)



Statistical Approach

« Assumption: If the noun phrase In
guestion consists of more than one word,
Its constituents should appear freqguently

In text, In isolation and as part of other
noun phrases

e Simple concatenative model
— Cannot handle complex morphology
— But OK with noun phrases
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Statistical Approach
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Statistical Language Models

1. Unigram model
— P(A-B) = P(A) P(B)
— With a Dirichlet process prior, the model can
treat any substring as a word candidate

— Tends to misidentify common collocations as
single words

e The noun phrase in question is the case!

(Goldwater+, 2009)



Statistical Language Models

2. Bigram model
— P(A-B) = P(A]#) P(B|A) P(#]B)

— Hierarchical Dirichlet process prior with a
unigram base measure

— Better handling of collocations

(Goldwater+, 2009)



Inference

e Gibbs sampling as randomized search
— Initialize segmentation

— Repeat stochastic alternation of local
segmentation

* Type-based block sampling (Liang+, 2010)

— Much faster convergence than token-based
sampling

— Allows non-randomized, consistent
Inttialization
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Token-based Sampling (Unigram)
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Token-based Sampling (Unigram)
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Token-based Sampling (Unigram)
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Token-based Sampling (Unigram)
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Type-based Sampling (Unigram)
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Type-based Sampling (Unigram)
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Type-based Sampling (Unigram)
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Problem when Applying Type-based
Sampling to the Bigram Model

* The joint probability of a type block is no
longer tractable due to the dependence
on latent assignments

* Approximation by one specific latent
assignment is possible, but too
cumbersome to consider all the boundary
assignment combinations
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Problem when Applying Type-based
Sanlpling to the Bigram Model
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a different type in the
bigram model



Solution: Metropolis-Hastings

. Select a unigram-level type block

. Draw a boundary assignment from a
proposal distribution

. Compute the joint probabilities of the
current and proposal assignments

. Accept the proposal according to the
acceptance function



Solution: Metropolis-Hastings

~W- E-A B -l -

o)

ft-=2-l-1z-& - -
J
o)

-R-F ®M-\W-% - WL - &R
- - & -



Solution: Metropolis-Hastings
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Solution: Metropolis-Hastings
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Solution: Metropolis-Hastings
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Solution: Metropolis-Hastings
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Initialization
by Dictionary-based Segmenter

* \ery close to an optimal
— But unknown words are often misidentified

e Consistent segmentation

— Too stable for the token-based sampler to
escape

— Type-based sampler can directly jump to
another consistent segmentation



summary of Inference Algorithms

Token-based Simple Notoriously slow
sampling convergence

Type-based e Fast convergence Only for the
sampling  Allow consistent unigram model
(Liang+, 2010) Initialization

e Fast convergence
Hybrid type-based < Allow consistent
sampling Initialization
(proposed)  Applicable to the

bigram model
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Experiments: Settings

e Data

— Noun phrases: entries of Japanese Wikipedia
« Manually annotated 500 entries

— Related text: article content

e |Inference

— Initialized by the dictionary-based
segmenter JUMAN

— Collect 10 samples after 10 burn-in iterations
— Output the most frequent segmentation
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Experiments: Results

unigram +
token-based

unigram +
type-based

bigram + bigram + deterministic
token-based hybrid type- segmenter
based (baseline)
(proposed)
Models

(Best hyperparameter settings)
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Effect of Initialization

Consistent segmentation by the  Randomly placed a boundary
deterministic segmenter with p=0.5

Initialization
(Best hyperparameter settings)
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Conclusions

* Applied statistical language models to
Japanese noun phrase segmentation

* Proposed an efficient inference
procedure

« Future work
— Integration into lexical acquisition from text
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