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Feature 26A: Prefixing vs. Suffixing in Inflectional Morphology
Little affixation

Strongly suffixing

Weakly suffixing

Equal prefixing and suffixing

Weakly prefixing

Strong prefixing
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ﬁ“&lﬂg\w. Suffixing in Inflectional Morphology

Feature 81A: Order of Subject, Object and Verb
SOV
SVO
VSO
VOS
OVS
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No dominant Order
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Two Types of Data

1. Modern languages 2. Phylogenetic trees
represented by relating these
typological features modern languages
152 discrete features 309 language families
Tetum | 1] 2] ~ |1 including 154 language isolates
R Proto-Austronesian
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How have languages changed in the past?
How are they likely to change in the future?

To answer these questions,
| develop statistical models that make use of
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Phylogenetic Comparative Method

Trees allow us to infer ancestral states,
with varying degrees of confidence
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Continuous-time Markov Chains (CTMCs)
for Statistical Analysis

Transition probability as a function of continuous time
P(x = b | parent(x) = a,t) = exp(tQ)qp

A binary feature has
a 2 X 2 transition rate matrix

Q= (_ﬁa —aﬁ)
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[Greenhill+, 2010]

OIOIOIOIOIO) [Maurits+, PNAS, 2014]
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Wait, Features are not Independent
Need to Model Correlated Evolution

Implicational universals [Greenberg, 1963]

Order of noun and

12 1 .
relative clause
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Independent CTMCs

Unable to take into account the observation that
the feature combination 01 is unnatural

Feature 2
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Expanding Feature Combinations Does not Scale

[Dunn+, Nature, 2011]

Combinatorial explosion prevents us from
modeling interactions involving multiple features

Feature 2
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My Goal: Model Correlated Evolution
Covering All Possible Dependencies
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My Solution: Latent Representations

Idea originally presented in [Murawaki, NAACL2015]

« Reorganize 152 discrete surface features into
100 binary latent parameters

— Parameters are independent by assumption

Parameters z, , Infer
1/1[0] |0 <@ [1]2] |1

Features X; .
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Latent Representations Capture
Inter-Feature Dependencies

Parameters z, ,

1

0

1

0

[Murawaki, JCNLP2017]

Features x;r ,
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Latent Representations Capture
Inter-Feature Dependencies

i . [Murawaki, IJCNLP2017]
Weight matrix W

29 | 04 [-03] - |-02

Parameters z, , 63 |43 |57 ~ |59 Feature score vector

1{0|1] - |O X 82 1-02]-25| - | 03| — 102 | 98 | -89 | - | -49
02 03] 12 | -2.4

Drawn from locally U
normalized distributions

Features x;r ,

1] 2 1




Latent Representations Capture
Inter-Feature Dependencies

i . [Murawaki, IJCNLP2017]
Weight matrix W

29 | 04 [-03] - |-02

Parameters z, , 63 |43 |57 ~ |59 Feature score vector

1{0|1] - |O X 82 1-02]-25| - | 03| — 102 | 98 | -89 | - | -49
02 03] 12 | -2.4

Drawn from locally U
normalized distributions

Features x;r ,

For Z1k = 1, Wk,f(i1,j1) > 0 and Wk,f(iz,jz) K0 tp2] =]t
indicate that feature i, is likely to take value j;
and that feature i, is unlikely to take value j,




Estimate Transition Rate Matrices for
Parameters and Use Them for Simulation
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Estimate Transition Rate Matrices for

Parameters and Use Them for Simulation

Parameters z, ,

Do some inference
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Results: Order of Subject, Object and Verb

Transition prob. with t = 2,000

SOVSVO VSO VOS OVS OSVndo.

Largely agree with the results of
[Maurits+ PNAS, 2014]
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Results: Order of Subject, Object and Verb
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Conclusions

* Proposed a new framework of latent
representation-based analysis of diachronic

typology

— Investigate correlated evolution in an
exploratory manner

 Future work

— Analyze features other than the order of subject,
object and verb

— Inspect inferred ancestral states
— Modeling contacts
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