
An arbitrary pair of languages
can be compared

Generally much more stable than cognates
Possibly even on the order of 10,000 years
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Background

Computational approaches to phylogenetic inference
Huge success in the last decade
 Indo-European
 Austronesian
 Bantu, etc
Previous studies are cognate-based, using either

1. regular sound changes, or
2. the rates of birth & death of cognates
 Only applicable to known language families
 Known because they share cognates!

 Language isolates lack cognates to be compared 
cross-linguistically
 Ainu
 Basque
 Japanese

Continuous space representations 
that capture typological naturalness

Experiment 2:
Building a single tree of the world’s languages 

based on the monogenesis hypothesis
(highly controversial)

Linguistic typology as the last hope
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Feature 81A
Order of SOV
• 0: SOV
• 1: SVO
• 2: VSO
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Japanese:
Korean:

Ainu:

Experiment 1: Mixing languages

What can be said about the ancestor?
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We know too little about how 

typological features change over time
The ancestor would be close to its 

descendants
The ancestor must be a typologically

natural language

?

Previous phylogenetic models assume
independence of features

Typological studies show they are interdependent
 Object-Verb implies Adjective-Noun [Greenberg, 1963]
A naïve application of phylogenetic models leads to

the reconstruction of unnatural ancestors
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Decode (with errors)

Binarize accordoing to categorical constraints

Debinarize the binary vector

x′

x′′

v′
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P x =
exp(𝑓𝑓 ℎ )

∑x′ exp(𝑓𝑓 h′ )

Typological
naturalness

The Autoencoder non-linearly maps the feature
vector into the continuous space
 The matrix We captures dependencies among features
 The decoder ensures that the original vector is 

reconstructible
Energy-based model P x assesses naturalness
 Trained such that observed languages are distinguished

from other possible combinations of features

Assumption: the ancestor is close to an intermediate
state between two descendants, 𝑎𝑎 and 𝑏𝑏
Compare two ways of mixing languages:

1. Mixtures of h:  linear interpolation in the continuous 
space h = 1 − 𝑟𝑟 h𝑎𝑎 + 𝑟𝑟h𝑏𝑏

2. Mixtures of v:  randomly replace the elements of the 
categorical vector v𝑎𝑎 with those of v𝑏𝑏 with prob. 𝑟𝑟

𝑟𝑟
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Mundari Khmer

Mixtures of v
are unnatural

Mixtures of h
keep naturalness

Postpositions → Prepositions
SOV → SVO

Strongly suffixing
→ Little affixation

Data:
 Typology Database: WALS
 Missing values are imputed by 

multiple correspondence analysis
 Known language families:

Ethnologue

Method:
 A simple generative tree model 

in the continuous space
 Build a binary tree on top of 

known language families
 Components’ stability is 

learned from known trees
 Run MCMC sampling
 Summarize samples by a 

maximum clade credibility tree


