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Background

Computational approaches to phylogenetic inference

[0 Huge success In the last decade
[ Indo-European
0 Austronesian
[0 Bantu, etc
[ Previous studies are cognate-based, using either
1. regular sound changes, or
2. the rates of birth & death of cognates
[ Only applicable to known language families
O Known because they share cognates!
[ Language Isolates lack cognates to be compared
cross-linguistically
O Ainu

[0 Basque
O Japanese

Linguistic typology as the last hope

Feature 81A

O An arbitrary pair of languages
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O Generally much more stable than cognates
[0 Possibly even on the order of 10,000 years

What can be said about the ancestor?

0 We know too little about how
typological features change over time

[0 The ancestor would be close to Its
descendants

[0 The ancestor must be a typologically
natural language

O Previous phylogenetic models assume
Independence of features

O Typological studies show they are interdependent
O Object-Verb implies Adjective-Noun [Greenberg, 1963]

O A naive application of phylogenetic models leads to
the reconstruction of unnatural ancestors

Continuous space representations
that capture typological naturalness
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0 The Autoencoder non-linearly maps the feature

vector into the continuous space

O The matrix We captures dependencies among features

[0 The decoder ensures that the original vector Is
reconstructible

O Energy-based model P(x) assesses naturalness
O Trained such that observed languages are distinguished
from other possible combinations of features
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Experiment 2:

Building a single tree of the world’s languages
based on the monogenesis hypothesis

(highly controversial)
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Experiment 1. Mixing languages

0 Assumption: the ancestor Is close to an intermediate
state between two descendants, a and b

[0 Compare two ways of mixing languages:
1. Mixtures of h: linear interpolation in the continuous
space h = (1 —r)h, + rh,
2. Mixtures of v. randomly replace the elements of the
categorical vector v, with those of v, with prob. r
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Data:
O Typology Database: WALS
O Missing values are imputed by
multiple correspondence analysis
O Known language families:
Ethnologue

Method:

< 0O A simple generative tree model
¥ | ~ INn the continuous space

O Build a binary tree on top of
known language families
O Components’ stability Is

learned from known trees

O Run MCMC sampling

O Summarize samples by a
maximum clade credibility tree
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