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Features of Linguistic Typology
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Features of Linguistic Typology

Feature 83A:
Order of Object and Verb
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Features of Linguistic Typology

Feature 83A:
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Order of Adjective and Noun
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Questions
(Not Addressed in This Talk)

1. How have these features changed over
time?

2. Can we use these features to trace the
deep history of languages?
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Missing Values are a Real Problem

« 73.1% of items are missing
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Missing Values are a Real Problem

« 73.1% of items are missing

* My model imputes missing values by combining
1. Synchronic clues (inter-feature dependencies)
2. Diachronic clues (inter-language dependencies)
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Missing Values are a Real Problem

« 73.1% of items are missing

* My model imputes missing values by combining
Synchronic clues (inter-feature dependencies)
2. Diachronic clues (inter-language dependencies)
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Synchronic Clues:
Inter-feature Dependencies

Feature 83A:
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I Matrix Decomposition
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Geographic Distribution
of an Induced Parameter

Feature 83A:
Order of Object and Verb
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Geographic Distribution
of an Induced Parameter

Geographic signals observed in surface features
are somehow lost during the induction
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Diachronic Clues:
Inter-language Dependencies

Phylogenetic
groupings
of languages

A column
of the matrix

Languages may share the same value because they ... Strength controlled by
1. are phylogenetically related, vertical stability
2. are spatially close (in contact), and/or

horizontal diffusibilit
3. just take a universally (globally) frequent value . TSI

universality
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Autologistic Model

&% The prob. of language !

Phylogenetic . . . .
aomes taking value j for feature i is
of languages .
P(xy; = j|x_1i i hisu;)
h oc exp(ViVyij + hiHyij + ul,])
—— .
feb///.fy/)lf/og 4 7 .92‘/;9 y //[}
et /6/7’?‘1/ e/"’0/760
() /a
’-00/760 Sfe'{'/'
S %\,
%, Yo
&y 4
6/0
Q )

[Yamauchi+, COLING2016]
A Bayesian extension will appear in the Journal of Language Evolution 10



Combined Model:
Diachronic model works in the latent space
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Geographic Distribution
of an Induced Parameter, Revised

Some parameters appear to preserve geographic
signals observed in surface features

12



Conclusions

* Proposed a Bayesian model that combines
synchronic and diachronic clues

* Induced a binary latent representation
that appears to preserve geographic
signals

* Remaining question: Can the latent
representation help uncovering the deep
history of languages?
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