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• Assistant professor at Language Media Lab.
– Our lab is the direct successor to Wired Telecommunications 

Lab. of the 1950s
– Teach undergrads in the School of Electrical and Electronic 

Engineering
• Devote >80% of research time in natural language processing

– Japanese zero anaphora resolution, shallow discourse parsing, 
neural network-based text generation, etc.

– Conference publication preferred to journal publication
• Bayesian since 2011

– Topic models, nonparametric Bayesian models for unsupervised 
word segmentation, etc.

• No formal training as a linguist
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MURAWAKI Yūgo 村脇 有吾
Background in computer science / engineering



• Relatively new to this field
– Started in 2014 when I was an assistant professor in 

Kyushu University
– Continue as a 20% project (actually much less) after 

moving back to Kyoto University in 2016
• Focus on statistical modeling

– Bayesian generative models can uncover complex 
latent structure of data

– “Data beggar” relying on publically available data
• WALS, Glottolog, etc.

• Interested in collaboration with linguists
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Computational Approaches to 
Linguistic Questions



• World Atlas of Language Structures (WALS)
– Matrix 𝑋𝑋 with 𝐿𝐿 = 2,679, 𝑁𝑁 = 104 after preprocessing
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• World Atlas of Language Structures (WALS)
– Matrix 𝑋𝑋 with 𝐿𝐿 = 2,679, 𝑁𝑁 = 104 after preprocessing
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• World Atlas of Language Structures (WALS)
– Matrix 𝑋𝑋 with 𝐿𝐿 = 2,679, 𝑁𝑁 = 104 after preprocessing
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Example: Feature 81A
Order of Subject, Object, Verb

[Dryer, 2005]

John ga tegami o   yon-da1 SOV

S O V

Japanese

The dog   chased   the cat2 SVO

S V O

English

Léann na sagairt na leabhair3 VSO

V S O

Irish

The priests are reading the books.

Hereafter referred to as BWO (basic word order)
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Example: Feature 81A
Order of Subject, Object, Verb

Source: http://wals.info/feature/81A

[Dryer, 2005]Hereafter referred to as BWO (basic word order)



• World Atlas of Language Structures (WALS)
– Matrix 𝑋𝑋 with 𝐿𝐿 = 2,679, 𝑁𝑁 = 104 after preprocessing
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• World Atlas of Language Structures (WALS)
– Matrix 𝑋𝑋 with 𝐿𝐿 = 2,679, 𝑁𝑁 = 104 after preprocessing
– Make use of two additional resources for part 1
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• World Atlas of Language Structures (WALS)
– Matrix 𝑋𝑋 with 𝐿𝐿 = 2,679, 𝑁𝑁 = 104 after preprocessing
– Make use of two additional resources for part 1

• Glottolog for part 2
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• Implicational universals [Greenberg, 1963]

– Order of object and verb & order of noun and 
relative clause
• If VO, then NRel
• If RelN, then OV

• A BWO change must have a profound impact 
on the whole grammatical system
– English: Shift to SVO appears to correlate with 

the move from synthetic to analytic
– North American langs: Rigidity of SOV reduced 

with morphological innovations [Mithun, 1995]
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Question: How to Model
Correlated Evolution

NRel RelN
VO ✓ ×

OV ✓ ✓



• Reconfigure N = 104 categorical surface features into 
K = 100 binary latent parameters
– Parameters are independent by assumption

• Inference in the latent space implicitly captures 
correlated evolution
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Key Idea: Latent Representations

1 1 0 0… 2 1 … 3
Features x𝑙𝑙,∗Parameters z𝑙𝑙,∗ Infer

1 0 0 1…
Parameters z𝑙𝑙′,∗

1 1 … 2
Features x𝑙𝑙′,∗Gen.

Do some inference
in the latent space



Part 1: How to induce latent 
representations from surface 
features

Part 2: How to use the latent 
representations to analyze 
diachronic changes
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Outline of This Talk



Diachrony-aware Induction of 
Binary Latent Representations 
from Typological Features
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Part 1

[Murawaki, IJCNLP2017]

The code available at https://github.com/murawaki/latent-typology/



• 𝟕𝟕𝟕𝟕.𝟏𝟏𝟏 of items are missing
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Missing Values are a Real Problem
also used as an indicator of the quality of latent representations
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• 𝟕𝟕𝟕𝟕.𝟏𝟏𝟏 of items are missing
• My model imputes missing values by combining

1. Synchronic clues (inter-feature dependencies)
2. Diachronic clues (inter-language dependencies)

14

Missing Values are a Real Problem
also used as an indicator of the quality of latent representations

…
𝐿𝐿

la
ng

ua
ge

s

𝑋𝑋

𝑁𝑁 categorical features
1

2

1

3

1

4

1

1

…
…
…

…

…

…

2

3

3

1

…

?

??

?



• 𝟕𝟕𝟕𝟕.𝟏𝟏𝟏 of items are missing
• My model imputes missing values by combining

1. Synchronic clues (inter-feature dependencies)
2. Diachronic clues (inter-language dependencies)

14

Missing Values are a Real Problem
also used as an indicator of the quality of latent representations

…
𝐿𝐿

la
ng

ua
ge

s

𝑋𝑋

𝑁𝑁 categorical features
1

2

1

3

1

4

1

1

…
…
…

…

…

…

2

3

3

1

…

?

??

?

60.95
66.22

69.88
73.83 74.46

MFV DIA MCA SYN SYNDIA

Diachronic Synchronic Combined



15

Synchronic Clues:
Inter-feature Dependencies
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Matrix Decomposition
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• 𝑍𝑍 is a latent representation of 
languages (parameters)

• 𝑊𝑊 captures co-occurrences of 
feature values
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Geographic Distribution
of an Induced Parameter

1
2
3

Feature 83A:
Order of Object and Verb
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Geographic Distribution
of an Induced Parameter

Geographic signals observed in surface features 
are somehow lost during the induction

1
2
3

Feature 83A:
Order of Object and Verb



Diachronic Clues:
Inter-language Dependencies
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The prob. of language 𝑙𝑙
taking value 𝑗𝑗 for feature 𝑖𝑖 is
𝑃𝑃 𝑥𝑥𝑙𝑙,𝑖𝑖 = 𝑗𝑗 x−𝑙𝑙,𝑖𝑖 , 𝑣𝑣𝑖𝑖 , ℎ𝑖𝑖 , u𝑖𝑖
∝ exp 𝑣𝑣𝑖𝑖𝑉𝑉𝑙𝑙,𝑖𝑖,𝑗𝑗 + ℎ𝑖𝑖𝐻𝐻𝑙𝑙,𝑖𝑖,𝑗𝑗 + 𝑢𝑢𝑖𝑖,𝑗𝑗

19

Autologistic Model
[Murawaki+, JoLE 2018]

Phylogenetic
groupings

of languages

spatial locations
of languages



𝑃𝑃 𝐴𝐴,𝑍𝑍,𝑊𝑊,𝑋𝑋 = 𝑃𝑃 𝐴𝐴 𝑃𝑃 𝑍𝑍 𝐴𝐴 𝑃𝑃 𝑊𝑊 𝑃𝑃 𝑋𝑋 𝑍𝑍,𝑊𝑊
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Combined Model:
Diachronic model works in the latent space
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• Recap: 73.1% of items are missing
• Treat 𝟏𝟏𝟏𝟏% of observed items as missing to see how well 

the model recovers them
• High accuracy ≒ Good quality of latent representations
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Geographic Distribution
of an Induced Parameter, Revised

Some parameters appear to preserve geographic 
signals observed in surface features 
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Estimated Vertical Stability and 
Horizontal Diffusibility (SYN)
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Estimated Vertical Stability and 
Horizontal Diffusibility (SYNDIA)



• Proposed a Bayesian model that combines 
synchronic and diachronic clues

• Missing value imputation indicates a good 
quality of the binary latent parameters

• Some latent parameters appear to 
preserve geographic signals of surface 
features
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Summary of Part 1



Latent Representation-based 
Analysis of Diachronic Typology

26

Part 2

(under review)



• Apply latent representations to 
diachronic inference
– Uniformitarian hypothesis

• Directly model parent-to-child transitions
– In part 1, we modeled both vertical and 

horizontal transmission but did not estimate 
ancestral states

– In part 2, we estimate ancestral states but 
do not directly model horizontal transmission

27

Outline of Part 2



• Assumption: 
phylogenetic trees are 
known (primarily 
based on lexical 
evidence)

• Able to infer ancestral 
states, with varying 
degrees of confidence

28

Phylogenetic Comparative Methods
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• Assumption: 
phylogenetic trees are 
known (primarily 
based on lexical 
evidence)

• Able to infer ancestral 
states, with varying 
degrees of confidence
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Phylogenetic Comparative Methods



• Prob. of taking value 𝑏𝑏 after time 𝑡𝑡
conditioned on the present value 𝑎𝑎:
exp(𝑡𝑡𝑡𝑡)𝑎𝑎,𝑏𝑏,
where transition rate matrix 𝑄𝑄 =

−𝛼𝛼 𝛼𝛼
𝛽𝛽 −𝛽𝛽

29

Continuous-time Markov Chain (CTMC)
Pr

ob
.

Time Time



• Observed data
– (Time-)tree(s)
– States of leaf nodes

• Latent data
– Transition rate matrix
– States of internal nodes

30

Estimate Transition Rate Matrix (TRM) 
using (Time-)tree(s)

?

?

?

?

?

0
tim

e before present

?

?

𝑄𝑄 =
−𝛼𝛼 𝛼𝛼
𝛽𝛽 −𝛽𝛽

[Greenhill+, 2010]
[Maurits+, PNAS 2014]
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Tying each Feature to a TRM Entails 
Independence Assumption 

11 11 11 21 2211
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𝛽𝛽1 −𝛽𝛽1𝑄𝑄2 =
−𝛼𝛼2 𝛼𝛼2
𝛽𝛽2 −𝛽𝛽2

• Unable to take into account the 
observation that feature combination 12
is unnatural

✓ ×

✓ ✓
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Modeling Feature Dependencies by 
Expanding Feature Combinations

1 1 1 3 41
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1 41
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?

• Categorical features (BWO has 6-7 values) and 
interactions between more than two features 
cause combinatorial explosion

[Dunn+, Nature 2011]
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• Reconfigure N = 104 categorical surface features into 
K = 100 binary latent parameters
– Parameters are independent by assumption

• Inference in the latent space implicitly captures 
correlated evolution
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Latent Representations (Recap)

1 1 0 0… 2 1 … 3
Features x𝑙𝑙,∗Parameters z𝑙𝑙,∗ Infer

1 0 0 1…
Parameters z𝑙𝑙′,∗

1 1 … 2
Features x𝑙𝑙′,∗Gen.

Phylogenetic inference
in the latent space



• Sample diversity problem [Croft, 2011]

• Solution: use Glottolog trees
– Need to infer the dates of internal nodes
– 50 calibration points collected from the 

secondary literature
34

Comparison with Previous Studies
Dep. # of families Tree sources Dating Abs.

Dediu (2010) Single 1 Experts Yes No

Greenhill+ (2010) Single 1 Cognates No Yes

Maurits+ (2014) Single 1 or 7 combined Other No Yes

Dunn+ (2011) Bin. Pair 1 Cognates No Yes

Ours All 309 incl. 155 isolates Experts Yes Yes



Step 3. Simulate language evolution using TRMs

1 1 0 0…
Latent parameters z𝑙𝑙,∗

Time 𝑡𝑡

1 0 0 1…
Latent parameters z𝑙𝑙′,∗

1 1 … 2

Surface features x𝑙𝑙′,∗Gen.

Q𝑘𝑘 = ∗ 0.0003
0.0002 ∗

1 1 0 0… 2 1 … 3

Surface features x𝑙𝑙,∗Latent parameters z𝑙𝑙,∗

Step 1. Map each language into the latent representations
Infer

35

Step 2. Infer a set of TRMs using phylogenetic trees
(also infer the states and dates of internal nodes)

1 1 0 0… 1 0 0 0… 0 0 1 1…

1 0 0 0…

0 0 1 1…

0 1 1 1… 1 1 1 0…

1 1 1 0…

0
tim

e before present

Q𝑘𝑘 = ∗ 0.0003
0.0002 ∗

TRM for
each parameter
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Predicting Future BWO with 𝑡𝑡 = 2,000

Avg. transition prob.
of BWO



36

Predicting Future BWO with 𝑡𝑡 = 2,000

Avg. transition prob.
of BWO

Largely agree with the findings 
of Maurits+ (PNAS 2014)
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Variability in the prob.
of keeping the same BWO
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Predicting Future BWO with 𝑡𝑡 = 2,000

Avg. transition prob.
of BWO

Variability in the prob.
of keeping the same BWO

Languages sharing the same BWO 
might not be a coherent group



Step 3. Simulate language evolution using TRMs

1 1 0 0…
Latent parameters z𝑙𝑙,∗

Time 𝑡𝑡
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Step 2. Infer a set of TRMs using phylogenetic trees
(also infer the states and dates of internal nodes)

1 1 0 0… 1 0 0 0… 0 0 1 1…

1 0 0 0…

0 0 1 1…

0 1 1 1… 1 1 1 0…

1 1 1 0…

0
tim

e before present

Q𝑘𝑘 = ∗ 0.0003
0.0002 ∗

TRM for
each parameter

Linear 
Regression



• Feature values typically associated with the specified 
word order have positive weights
– SOV: genitive before noun, postpositions, RelN, suffixes

• Diachronic stability of SVO positively correlates with
– 51A Position of Case Affixes: Case prefixes
– 26A Prefixing vs. Suffixing in Inflectional Morphology: Little 

affixation
– 26A Prefixing vs. Suffixing in Inflectional Morphology: Strong 

prefixing
– 51A Position of Case Affixes: No case affixes or adpositional

clitics

38

Regression Analysis
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Simulating Japanese BWO



• Future Japanese with SVO 
order (12.1%) is 
characterized by:
– 85A Order of Adposition and 

Noun Phrase: Prepositions
– 51A Position of Case Affixes:  

No case affixes or 
adpositional clitics

40

Regression Analysis Again



• New framework of latent representation-
based analysis of diachronic typology
– Investigate correlated evolution in an 

exploratory manner

• Future work
– Analyze features other than BWO
– Manually analyze inferred ancestral states
– Modeling contacts [Murawaki, NAACL2016]
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Conclusions and Future Work





• Example: Tone
– All modern Sinitic languages are tonal
– Proto-Sinitic had a complex tone system with prob. of 70.4%, 

according to our analysis
– But Old Chinese was atonal [Baxter+, 2014]

• Need to collect typological profiles of past languages
43

Contact-induced Changes
?

?

?
?

What actually happened What is inferred from leaf nodes
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Mixture Model aka Topic Model
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Audio source
separation
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